skip to main content


Search for: All records

Creators/Authors contains: "Shen, Mohan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rare earth emitters enable critical quantum resources including spin qubits, single photon sources, and quantum memories. Yet, probing of single ions remains challenging due to low emission rate of their intra-4foptical transitions. One feasible approach is through Purcell-enhanced emission in optical cavities. The ability to modulate cavity-ion coupling in real-time will further elevate the capacity of such systems. Here, we demonstrate direct control of single ion emission by embedding erbium dopants in an electro-optically active photonic crystal cavity patterned from thin-film lithium niobate. Purcell factor over 170 enables single ion detection, which is verified by second-order autocorrelation measurement. Dynamic control of emission rate is realized by leveraging electro-optic tuning of resonance frequency. Using this feature, storage, and retrieval of single ion excitation is further demonstrated, without perturbing the emission characteristics. These results promise new opportunities for controllable single-photon sources and efficient spin-photon interfaces.

     
    more » « less
  2. Microresonator-based soliton generation promises chip-scale integration of optical frequency combs for applications spanning from time keeping to frequency synthesis. Access to the soliton repetition rate is a prerequisite for those applications. While miniaturized cavities harness Kerr nonlinearity and enable terahertz soliton repetition rates, such high rates are not amenable to direct electronic detection. Here, we demonstrate hybrid Kerr and electro-optic microcombs using a lithium niobate thin film that exhibits both Kerr and Pockels nonlinearities. By interleaving the high-repetition-rate Kerr soliton comb with the low-repetition-rate electro-optic comb on the same waveguide, wide Kerr soliton mode spacing is divided within a single chip, allowing for direct electronic detection and feedback control of the soliton repetition rate. Our work establishes an integrated approach to electronically access terahertz solitons, paving the way for building chip-scale referenced comb sources.

     
    more » « less